他看了1800多张脸,终于总结出了坏人都长什么样…(组图)
你看过迪士尼的动画片吗?
那种只要坏人一露脸,你就明白他/她已经坏到无可救药的动画片。
鹰钩鼻、宽下巴、小胡子都是反派的经典特点
(图源:fandom)
在迪士尼电影里,“好人”和“坏人”有着非常明显的区别。这是因为年纪太小的观众可能无法理顺电影的逻辑,所以就需要一些明确的视觉提示,区分好人和坏人:
迪士尼的反派 (图源:Deviant Art)
迪士尼的主角 (图源:Deviant Art)
从上两幅迪士尼反派与主角的对比中,我们可以发现——动画片中好人与坏人的区别是非常明显的。好人脸型相对柔和,更接近真实,鹅蛋脸、瓜子脸居多。而坏人的脸型则相对夸张、棱角分明,要么特别细长,要么大到没边。
(图源:Deviant Art)
当然还有眼睛:好人的眼珠子普遍要比坏人大上一圈。
而如果我告诉你,从长相判断善恶,实际上也是有一定科学依据的呢?
纳粹战犯戈培尔 1933年,日内瓦
在2016年,上海交通大学教授武筱林发布了论文《基于面部图像的自动犯罪性概率推断》 ,用人工智能的算法寻找罪犯的普遍面部特征。
(图源:FUSION)
实验结果显示,至少在实验团队所检测的1856张人脸照片里,机器可以用较高的准确率把罪犯从普通人中间区分开来。
上排三张照片为实验用到的罪犯照片
下排三张为普通人的照片
这1856张脸中,有730人是已经被法庭定罪的罪犯。而剩下的1126人则是未被定罪的普通人…机器通过学习这两类人的脸部照片,找到了两拨人在特定面部细节上的区别。
上图为研究人员主要关注的面部特征。d瞳距;
θ人中是否有明显的线条,以及ρ嘴巴大小
实验报告中还提到:计算机的视觉算法没有主观偏见,可以确保结果的客观性(不受人类主观感情影响)
简单的说,就是发现了坏人脸到底长什么样!
计算机根据机器学习生成罪犯和非罪犯的平均照片
左侧为罪犯,右侧为非罪犯
根据研究人员的报告,罪犯与非罪犯面部特征最大的区别在于三点:
1.瞳距:罪犯的瞳距相对而言更小。两眼之间更加接近。
2.人中: 罪犯的人中更加明显,有清晰的两条线。而普通人则没有明显的人中
3.嘴巴:罪犯的嘴巴更小一些。
除此之外,研究人员还发现,罪犯之间的面部细节差异更大,而普通人则没有那么大的差异。
上排为罪犯长相的四种主要类型
下排为普通人长相的三种主要类型
简单地说,就是好人都是相似的,罪犯则都长得各不相同…这与电影里那么多奇形怪状的反派角色设计不谋而合…
(图源:samen)
不用说,这篇paper引起了大家的广泛讨论。
虽然,交大教授武筱林马上公开表示:他的研究完全出于研究目的,对于现实世界里的公共安全不具备指导意义…
但敏感的美国网民,马上联想到了历史上充满争议的一向相关研究:人相学(Physiognomy)。
人相学(图源:维基百科)
人相学在19世纪的欧洲,曾经是非常流行的一个学科。科学家们试图从人类的的脸部特征确定一个人的性格。
最有名的人相学家,要数意大利科学家Cesare Lombroso。 Lombroso宣称“几乎所有的罪犯”都有“大大的耳朵,厚厚的头发,细长的胡须,明显的鼻窦,突出的下巴和宽阔的颧骨”。
人相学家Lombroso(图源:historyextra)
这种分析植根于一种受进化论影响的理论:Lombroso认为罪犯类似于进化前的野蛮人和猿人。
在更细分的领域,Lombroso认为: 盗贼都有小而机灵的眼睛,强奸者有着肿胀的嘴唇和眼眶,而凶手的鼻子“常常像鹰一样大”。
19世纪人相学册子,左侧为坏人,右侧为好人
(图源:angrywhiteman)
Lombroso的研究在今天看来当属无稽之谈。他的许多判断的根据并不来自于科学研究,而是根植于当时社会的种族歧视:鹰钩鼻、突出的下巴和宽阔的额骨都被认为是犹太人典型的形象。而细长的胡须和小眼睛,则与当时欧洲人眼里的东方人有几分相似之处。他的研究总结起来就是:长得不像白人,就是罪犯。
人相学中不同类型的鼻子
(图源:silhouettesbyhand)
这种对于罪犯的“人相学”研究大大助长了当时欧美种族主义的影响力。而许多人担心,武教授的研究会让社会对那些长着“罪犯脸”的人产生歧视。
总是演反派的肖恩宾 (图源:Zimbio)
他们认为罪犯之所以为罪犯,是因为他们做了违法的事。如果我们因为一个人的长相,就让他经受与犯罪分子相同的歧视,这是有违伦理的。
而且罪犯的那些特征:嘴巴小、人中明显等只是一种统计学上的结果。非罪犯人群里也有很多具备这种特征的人…一棍子打死一片,显然不合适。
斯坦福心理学家Kosinski(图源:guardian)
然而,更加恐怖的是,人脸识别对于我们社会的影响并不止步于犯罪倾向的预测。
就在去年,斯坦福大学心理学家Michal Kosinski发过一篇paper:他通过研究35326张面孔,找到了同性恋人群与异性恋人群之间的面部差异。
上排左侧为直男,右侧为gay
下排左侧为直女,右侧为les
在实验报告中,Kosinski甚至写道:鉴于目前很多公司和政府开始使用人脸识别系统,我们的研究结果揭示了一种侵犯同性恋者隐私的威胁。
(图源:evolvingsecience)
即大公司或政府很有可能利用这套算法,给疑似同性恋者施加隐形天花板…
当然,值得注意的是,这两篇研究的结果都是完全基于统计与算法的。他们并没有去寻找面部特征与犯罪行为或者同性恋行为之间的关系。
(图源:exmachina)
也就是说,这两篇paper展示的是一种相关性,而非证实的因果性——打个比方,我们人类的面部特征也是不断变化的,这些罪犯完全有可能是成为罪犯之后,面部特征才逐渐趋同于罪犯。如果是这样,面部特征才是果,而犯罪则是原因。
(图源:couriermail)
以貌取人虽然有它一定的道理,但我们终究是一个个独特、复杂的个体。如果我们用一些简单的特征去粗暴地给别人贴标签,那我们比冰冷的机器也强不到哪里去了…